Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nat Rev Endocrinol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760482

RESUMO

Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.

2.
Redox Biol ; 65: 102842, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572454

RESUMO

The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) 2 has been linked to both insulin resistance and exercise training adaptations in skeletal muscle. This study explores the previously unexamined role of NOX2 in the interplay between diet-induced insulin resistance and exercise training (ET). Using a mouse model that harbors a point mutation in the essential NOX2 regulatory subunit, p47phox (Ncf1*), we investigated the impact of this mutation on various metabolic adaptations. Wild-type (WT) and Ncf1* mice were assigned to three groups: chow diet, 60% energy fat diet (HFD), and HFD with access to running wheels (HFD + E). After a 16-week intervention, a comprehensive phenotypic assessment was performed, including body composition, glucose tolerance, energy intake, muscle insulin signaling, redox-related proteins, and mitochondrial adaptations. The results revealed that NOX2 deficiency exacerbated the impact of HFD on body weight, body composition, and glucose intolerance. Moreover, in Ncf1* mice, ET did not improve glucose tolerance or increase muscle cross-sectional area. ET normalized body fat independently of genotype. The lack of NOX2 activity during ET reduced several metabolic adaptations in skeletal muscle, including insulin signaling and expression of Hexokinase II and oxidative phosphorylation complexes. In conclusion, these findings suggest that NOX2 mediates key beneficial effects of exercise training in the context of diet-induced obesity.


Assuntos
Resistência à Insulina , Animais , Camundongos , Resistência à Insulina/fisiologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/genética , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos C57BL
3.
Sci Adv ; 9(32): eadf7119, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556547

RESUMO

Obesity and type 2 diabetes (T2D) are growing health challenges with unmet treatment needs. Traf2- and NCK-interacting protein kinase (TNIK) is a recently identified obesity- and T2D-associated gene with unknown functions. We show that TNIK governs lipid and glucose homeostasis in Drosophila and mice. Loss of the Drosophila ortholog of TNIK, misshapen, altered the metabolite profiles and impaired de novo lipogenesis in high sugar-fed larvae. Tnik knockout mice exhibited hyperlocomotor activity and were protected against diet-induced fat expansion, insulin resistance, and hepatic steatosis. The improved lipid profile of Tnik knockout mice was accompanied by enhanced skeletal muscle and adipose tissue insulin-stimulated glucose uptake and glucose and lipid handling. Using the T2D Knowledge Portal and the UK Biobank, we observed associations of TNIK variants with blood glucose, HbA1c, body mass index, body fat percentage, and feeding behavior. These results define an untapped paradigm of TNIK-controlled glucose and lipid metabolism.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Obesidade , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364105

RESUMO

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
5.
J Cachexia Sarcopenia Muscle ; 14(4): 1631-1647, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37194385

RESUMO

BACKGROUND: Metabolic dysfunction and cachexia are associated with poor cancer prognosis. With no pharmacological treatments, it is crucial to define the molecular mechanisms causing cancer-induced metabolic dysfunction and cachexia. Adenosine monophosphate-activated protein kinase (AMPK) connects metabolic and muscle mass regulation. As AMPK could be a potential treatment target, it is important to determine the function for AMPK in cancer-associated metabolic dysfunction and cachexia. We therefore established AMPK's roles in cancer-associated metabolic dysfunction, insulin resistance and cachexia. METHODS: In vastus lateralis muscle biopsies from n = 26 patients with non-small cell lung cancer (NSCLC), AMPK signalling and protein content were examined by immunoblotting. To determine the role of muscle AMPK, male mice overexpressing a dominant-negative AMPKα2 (kinase-dead [KiDe]) specifically in striated muscle were inoculated with Lewis lung carcinoma (LLC) cells (wild type [WT]: n = 27, WT + LLC: n = 34, mAMPK-KiDe: n = 23, mAMPK-KiDe + LLC: n = 38). Moreover, male LLC-tumour-bearing mice were treated with (n = 10)/without (n = 9) 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to activate AMPK for 13 days. Littermate mice were used as controls. Metabolic phenotyping of mice was performed via indirect calorimetry, body composition analyses, glucose and insulin tolerance tests, tissue-specific 2-[3H]deoxy-d-glucose (2-DG) uptake and immunoblotting. RESULTS: Patients with NSCLC presented increased muscle protein content of AMPK subunits α1, α2, ß2, γ1 and γ3 ranging from +27% to +79% compared with control subjects. In patients with NSCLC, AMPK subunit protein content correlated with weight loss (α1, α2, ß2 and γ1), fat-free mass (α1, ß2 and γ1) and fat mass (α1 and γ1). Tumour-bearing mAMPK-KiDe mice presented increased fat loss and glucose and insulin intolerance. LLC in mAMPK-KiDe mice displayed lower insulin-stimulated 2-DG uptake in skeletal muscle (quadriceps: -35%, soleus: -49%, extensor digitorum longus: -48%) and the heart (-29%) than that in non-tumour-bearing mice. In skeletal muscle, mAMPK-KiDe abrogated the tumour-induced increase in insulin-stimulated TBC1D4thr642 phosphorylation. The protein content of TBC1D4 (+26%), pyruvate dehydrogenase (PDH; +94%), PDH kinases (+45% to +100%) and glycogen synthase (+48%) was increased in skeletal muscle of tumour-bearing mice in an AMPK-dependent manner. Lastly, chronic AICAR treatment elevated hexokinase II protein content and normalized phosphorylation of p70S6Kthr389 (mTORC1 substrate) and ACCser212 (AMPK substrate) and rescued cancer-induced insulin intolerance. CONCLUSIONS: Protein contents of AMPK subunits were upregulated in skeletal muscle of patients with NSCLC. AMPK activation seemed protectively inferred by AMPK-deficient mice developing metabolic dysfunction in response to cancer, including AMPK-dependent regulation of multiple proteins crucial for glucose metabolism. These observations highlight the potential for targeting AMPK to counter cancer-associated metabolic dysfunction and possibly cachexia.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Masculino , Animais , Monofosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Pulmonar de Células não Pequenas/complicações , Caquexia/etiologia , Caquexia/metabolismo , Neoplasias Pulmonares/complicações , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo
6.
Acta Oncol ; 62(4): 364-371, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042166

RESUMO

BACKGROUND: Insulin resistance is a critical cause of metabolic dysfunctions. Metabolic dysfunction is common in patients with cancer and is associated with higher cancer recurrence rates and reduced overall survival. Yet, insulin resistance is rarely considered in the clinic and thus it is uncertain how frequently this condition occurs in patients with cancer. METHODS: To address this knowledge gap, we performed a systematic review and a meta-analysis guided by the Preferred Items for Systematic Review and Meta-Analyses (PRISMA) statement. We included studies assessing insulin resistance in patients with various cancer diagnoses, using the gold-standard hyperinsulinemic-euglycemic clamp method. Studies eligible for inclusion were as follows: (1) included cancer patients older than 18 years of age; (2) included an age-matched control group consisting of individuals without cancer or other types of neoplasms; (3) measured insulin sensitivity using the hyperinsulinemic-euglycemic clamp method. We searched the databases MEDLINE, Embase, and Cochrane Central Register of Controlled Trials for articles published from database inception through March 2023 with no language restriction, supplemented by backward and forward citation searching. Bias was assessed using funnel plot. FINDINGS: Fifteen studies satisfied the criteria. The mean insulin-stimulated rate of glucose disposal (Rd) was 7.5 mg/kg/min in control subjects (n = 154), and 4.7 mg/kg/min in patients with a cancer diagnosis (n = 187). Thus, the Rd mean difference was -2.61 mg/kg/min [95% confidence interval, -3.04; -2.19], p<.01). Heterogeneity among the included studies was insignificant (p=.24). INTERPRETATION: These findings suggest that patients with a cancer diagnosis are markedly insulin resistant. As metabolic dysfunction in patients with cancer associates with increased recurrence and reduced overall survival, future studies should address if ameliorating insulin resistance in this population can improve these outcomes thereby improving patient care.Key pointsMetabolic dysfunction increases cancer recurrence rates and reduces survival for patients with cancer.Insulin resistance is a critical cause of metabolic dysfunctions.To date, no comprehensive compilation of research investigating insulin resistance in cancer patients has been produced.In this meta-analysis, we found that patients with various cancers were markedly insulin-resistant.


Assuntos
Resistência à Insulina , Insulinas , Neoplasias , Humanos
7.
Nat Commun ; 14(1): 108, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609505

RESUMO

Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS. In the context of mitochondrial fragmentation, we demonstrate that mitochondria-endosome contacts mediated by the endosomal protein Rab5C are required in TLR9 activation in cells. Skeletal muscle mitochondrial fragmentation promotes TLR9-dependent inflammation, muscle atrophy, reduced physical performance and enhanced IL6 response to exercise, which improved upon chronic anti-inflammatory treatment. Taken together, our data demonstrate that mitochondrial dynamics is key in preventing sterile inflammatory responses, which precede the development of muscle atrophy and impaired physical performance. Thus, we propose the targeting of mitochondrial dynamics as an approach to treating disorders characterized by chronic inflammation and mitochondrial dysfunction.


Assuntos
DNA Mitocondrial , Miosite , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Receptor Toll-Like 9/metabolismo , Dinâmica Mitocondrial/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Inflamação/patologia
8.
J Biol Methods ; 9(3): e162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404875

RESUMO

Skeletal muscle contractions stimulate glucose uptake into the working muscles during exercise. Because this signaling pathway is independent of insulin, exercise constitutes an important alternative pathway to increase glucose uptake, also in insulin-resistant muscle. Therefore, much effort is being put into understanding the molecular regulation of exercise-stimulated glucose uptake by skeletal muscle. To delineate the causal molecular mechanisms whereby muscle contraction or exercise regulate glucose uptake, the investigation of genetically manipulated rodents is necessary. Presented here is a modified and optimized protocol assessing exercise-induced muscle glucose uptake in mice in response to acute treadmill running. Using this high-throughput protocol, running capacity can accurately and reproducibly be determined in mice, and basal- and exercise-stimulated skeletal muscle glucose uptake and intracellular signaling can precisely and dose-dependently be measured in awake mice in vivo without the need for catheterization and with minimal loss of blood.

9.
J Physiol ; 600(20): 4393-4408, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054466

RESUMO

Whole-body euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulin- and contraction-stimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrin-associated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux. This review explores the role of the ECM and the actin cytoskeleton in insulin- and contraction-mediated glucose uptake in skeletal muscle. This is a clinically important area of research given that defects in the structural integrity of the ECM and integrin-associated proteins may contribute to loss of muscle function and decreased glucose uptake in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Diabetes Mellitus Tipo 2/metabolismo , Matriz Extracelular/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Integrinas/metabolismo , Músculo Esquelético/metabolismo
11.
FASEB J ; 36(3): e22211, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35195922

RESUMO

Metabolic dysfunction and insulin resistance are emerging as hallmarks of cancer and cachexia, and impair cancer prognosis. Yet, the molecular mechanisms underlying impaired metabolic regulation are not fully understood. To elucidate the mechanisms behind cancer-induced insulin resistance in muscle, we isolated extensor digitorum longus (EDL) and soleus muscles from Lewis Lung Carcinoma tumor-bearing mice. Three weeks after tumor inoculation, muscles were isolated and stimulated with or without a submaximal dose of insulin (1.5 nM). Glucose transport was measured using 2-[3 H]Deoxy-Glucose and intramyocellular signaling was investigated using immunoblotting. In soleus muscles from tumor-bearing mice, insulin-stimulated glucose transport was abrogated concomitantly with abolished insulin-induced TBC1D4 and GSK3 phosphorylation. In EDL, glucose transport and TBC1D4 phosphorylation were not impaired in muscles from tumor-bearing mice, while AMPK signaling was elevated. Anabolic insulin signaling via phosphorylation of the mTORC1 targets, p70S6K thr389, and ribosomal-S6 ser235, were decreased by cancer in soleus muscle while increased or unaffected in EDL. In contrast, the mTOR substrate, pULK1 ser757, was reduced in both soleus and EDL by cancer. Hence, cancer causes considerable changes in skeletal muscle insulin signaling that is dependent on muscle-type, which could contribute to metabolic dysregulation in cancer. Thus, the skeletal muscle could be a target for managing metabolic dysfunction in cancer.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Glucose/metabolismo , Secreção de Insulina , Músculo Esquelético/metabolismo , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Am J Physiol Endocrinol Metab ; 322(1): E63-E73, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866401

RESUMO

In mice, exercise is suggested to activate the mechanistic target of rapamycin complex 2 (mTORC2) in skeletal muscle, and mTORC2 is required for normal muscle glucose uptake during exercise. Whether this translates to human skeletal muscle and what signaling pathways facilitate the exercise-induced mTORC2 activation is unknown. We herein tested the hypothesis that exercise increases mTORC2 activity in human skeletal muscle and investigated if ß2-adrenergic receptor (AR) activation mediates exercise-induced mTORC2 activation. We examined several mTORC2 activity readouts (p-NDRG1 Thr346, p-Akt Ser473, p-mTOR S2481, and p-Akt Thr450) in human skeletal muscle biopsies after uphill walking or cycling exercise. In mouse muscles, we assessed mTORC2 activity readouts following acute activation of muscle ß2-adrenergic or GS signaling and during in vivo and ex vivo muscle contractions. Exercise increased phosphorylation of NDRG1 Thr346 in human soleus, gastrocnemius, and vastus lateralis muscle, without changing p-Akt Ser473, p-Akt Thr450, and p-mTOR Ser2481. In mouse muscle, stimulation of ß2-adrenergic or GS signaling and ex vivo contractions failed to increase p-NDRG1 Thr346, whereas in vivo contractions were sufficient to induce p-NDRG1 Thr346. In conclusion, the mTORC2 activity readout p-NDRG1 Thr346 is a novel exercise-responsive signaling protein in human skeletal muscle. Notably, contraction-induced p-NDRG1 Thr346 appears to require a systemic factor. Unlike exercise, and in contrast to published data obtained in cultured muscles cells, stimulation of ß2-adrenergic signaling is not sufficient to trigger NDRG1 phosphorylation in mature mouse skeletal muscle.NEW & NOTEWORTHY The mTORC2 readout p-NDRG Thr346 is a novel exercise-responsive protein in human skeletal muscle. ß2-AR and GS signaling are not sufficient to induce mTORC2 signaling in adult muscle. In vivo, but not ex vivo, contraction induced p-NDRG Thr346, which indicates requirement of a systemic factor for exercise-induced mTORC2 activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Caminhada/fisiologia , Adulto , Animais , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/fisiologia , Fosforilação/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Adulto Jovem
13.
Biochem J ; 478(21): 3827-3846, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34751700

RESUMO

The interaction between insulin and exercise is an example of balancing and modifying the effects of two opposing metabolic regulatory forces under varying conditions. While insulin is secreted after food intake and is the primary hormone increasing glucose storage as glycogen and fatty acid storage as triglycerides, exercise is a condition where fuel stores need to be mobilized and oxidized. Thus, during physical activity the fuel storage effects of insulin need to be suppressed. This is done primarily by inhibiting insulin secretion during exercise as well as activating local and systemic fuel mobilizing processes. In contrast, following exercise there is a need for refilling the fuel depots mobilized during exercise, particularly the glycogen stores in muscle. This process is facilitated by an increase in insulin sensitivity of the muscles previously engaged in physical activity which directs glucose to glycogen resynthesis. In physically trained individuals, insulin sensitivity is also higher than in untrained individuals due to adaptations in the vasculature, skeletal muscle and adipose tissue. In this paper, we review the interactions between insulin and exercise during and after exercise, as well as the effects of regular exercise training on insulin action.


Assuntos
Exercício Físico , Glucose/metabolismo , Glicogênio/metabolismo , Insulina/metabolismo , Músculos/metabolismo , Animais , Humanos
15.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801684

RESUMO

Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.


Assuntos
Terapia por Exercício/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Neoplasias/terapia , Tecido Adiposo/metabolismo , Animais , Caquexia/metabolismo , Exercício Físico/fisiologia , Humanos , Hiperlipidemias/metabolismo , Inflamação , Resistência à Insulina , Doenças Metabólicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/fisiopatologia , Ratos , Regulação para Cima
16.
Cell Metab ; 33(4): 758-780, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826918

RESUMO

As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.


Assuntos
Insulina/metabolismo , Músculo Esquelético/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Exercício Físico , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Estresse Oxidativo , Receptor de Insulina/metabolismo , Transdução de Sinais
17.
J Physiol ; 599(7): 1937-1938, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547635

Assuntos
Comunicação
18.
Am J Physiol Endocrinol Metab ; 320(1): E43-E54, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103453

RESUMO

This study aimed to investigate the mechanisms known to regulate glucose homeostasis in human skeletal muscle of healthy and prediabetic subjects exercising in normobaric hypoxia. Seventeen healthy (H; 28.8 ± 2.4 yr; maximal oxygen consumption (V̇O2max): 45.1 ± 1.8 mL·kg-1·min-1) and 15 prediabetic (P; 44.6 ± 3.9 yr; V̇O2max: 30.8 ± 2.5 mL·kg-1·min-1) men were randomly assigned to two groups performing an acute exercise bout (heart rate corresponding to 55% V̇O2max) either in normoxic (NE) or in hypoxic (HE; fraction of inspired oxygen [Formula: see text] 14.0%) conditions. An oral glucose tolerance test (OGTT) was performed in a basal state and after an acute exercise bout. Muscle biopsies from m. vastus lateralis were taken before and after exercise. Venous blood samples were taken at regular intervals before, during, and after exercise. The two groups exercising in hypoxia had a larger area under the curve of blood glucose levels during the OGTT after exercise compared with baseline (H: +11%; P: +4%). Compared with pre-exercise, an increase in p-TBC1D1 Ser237 and in p-AMPK Thr172 was observed postexercise in P NE (+95%; +55%, respectively) and H HE (+91%; +43%, respectively). An increase in p-ACC Ser212 was measured after exercise in all groups (H NE: +228%; P NE: +252%; H HE: +252%; P HE: +208%). Our results show that an acute bout of exercise in hypoxia reduces glucose tolerance in healthy and prediabetic subjects. At a molecular level, some adaptations regulating glucose transport in muscle were found in all groups without associations with glucose tolerance after exercise. The results suggest that hypoxia negatively affects glucose tolerance postexercise through unidentified mechanisms.NEW & NOTEWORTHY The molecular mechanisms involved in glucose tolerance after acute exercise in hypoxia have not yet been elucidated in human. Due to the reversible character of their status, prediabetic individuals are of particular interest for preventing the development of type 2 diabetes. The present study is the first to investigate muscle molecular mechanisms during exercise and glucose metabolism after exercise in prediabetic and healthy subjects exercising in normoxia and normobaric hypoxia.


Assuntos
Exercício Físico/fisiologia , Teste de Tolerância a Glucose , Hipóxia/metabolismo , Estado Pré-Diabético/metabolismo , Adulto , Limiar Anaeróbio , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Humanos , Insulina/sangue , Insulina/farmacologia , Lipídeos/sangue , Masculino , Músculo Esquelético/metabolismo
19.
Int J Obes (Lond) ; 45(2): 316-325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32873911

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery is a therapeutic intervention for morbid obesity and type 2 diabetes (T2D) that improves metabolic regulation. Follistatin (Fst) could be implicated in improved glycemia as it is highly regulated by RYGB. However, it is unknown if metabolic status, such as T2D, alters the Fst response to RYGB. In addition, the effect of RYGB on the Fst target, activin A, is unknown in individuals with obesity and T2D, but is needed to interpret the functional effects of altering Fst. Finally, whether Fst-regulated intracellular signaling contributes to beneficial effects of RYGB is undetermined. METHODS: Circulating Fst and activin A were measured before, 1 week, and 1 year after RYGB surgery in a total of 20 individuals with obesity, 10 with normoglycemia (NGT) and 10 with preoperative T2D. Intracellular signaling downstream of the Activin receptor type IIB (ActRIIB) signaling pathway was analyzed in skeletal muscle and adipose tissue. RESULTS: The doubling in circulating Fst observed in subjects with NGT 1-week and 1-year post surgery was absent in T2D. After 1 week, RYGB reduced activin A by 27% (p < 0.001) and 20% (p < 0.01) in subjects with NGT and T2D, respectively; a reduction that tended to be maintained in the subjects with T2D at 1-year post-RYGB (-15%; p = 0.0592). RYGB had no effects on skeletal muscle ActRIIB signaling. In contrast, adipose tissue phosphorylation of SMAD2Ser465/467, p70S6KThr389, S6RPSer235/236, and 4E-BP1Thr37/49 was highly regulated, particularly 1-year post-RYGB (p < 0.05). CONCLUSIONS: In subjects with preoperative T2D, RYGB did not increase circulating Fst contrasting subjects with NGT, while the reduction in activin A was maintained. ActRIIB signaling was upregulated in adipose tissue, but not skeletal muscle, following RYGB in both individuals with NGT and T2D. Our results suggest a role of adipose tissue ActRIIB signaling for the beneficial effects of RYGB surgery.


Assuntos
Receptores de Activinas Tipo II/análise , Ativinas/sangue , Ativinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Folistatina/sangue , Folistatina/metabolismo , Obesidade Mórbida , Tecido Adiposo/metabolismo , Adulto , Biópsia , Glicemia , Feminino , Seguimentos , Derivação Gástrica , Glucose/metabolismo , Controle Glicêmico , Humanos , Subunidades beta de Inibinas/metabolismo , Masculino , Pessoa de Meia-Idade , Músculos/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Transdução de Sinais , Fatores de Tempo
20.
J Physiol ; 598(24): 5701-5716, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32969494

RESUMO

KEY POINTS: Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAKTyr397 were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups. Rac1 deletion in the Rac1 knockout model did not alter the expression of integrin-associated proteins. Phenylalanine kinetics were reduced in the haemodialysis group at 30 and 60 min post meal ingestion compared to controls; both groups showed similar levels of insulin sensitivity and ß-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in haemodialysis patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients. ABSTRACT: Muscle atrophy, insulin resistance and reduced muscle phosphoinositide 3-kinase-Akt signalling are common characteristics of patients undergoing maintenance haemodialysis (MHD). Disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in MHD patients. Eight MHD patients (age: 56 ± 5 years: body mass index: 32 ± 2 kg m-2 ) and non-diseased controls (age: 50 ± 2 years: body mass index: 31 ± 1 kg m-2 ) received primed continuous l-[ring-2 H5 ]phenylalanine before consuming a mixed meal. Phenylalanine metabolism was determined using two-compartment modelling. Muscle biopsies were collected prior to the meal and at 300 min postprandially. In a separate experiment, skeletal muscle tissue from muscle-specific Rac1 knockout (Rac1 mKO) was harvested to investigate whether Rac1 depletion disrupted the cytoskeleton-integrin linkage, allowing for cross-model examination of proteins of interest. ILK, PINCH1 and pFAKTyr397 were significantly lower in MHD (P < 0.01). Rac1 and Akt showed no difference between groups for the human trial. Rac1 deletion in the Rac1 mKO model did not alter the expression of integrin-associated proteins. Phenylalanine rates of appearance and disappearance, as well as metabolic clearance rates, were lower in the MHD group at 30 and 60 min post meal ingestion compared to controls (P < 0.05). Both groups showed similar levels of insulin sensitivity and ß-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in MHD patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients.


Assuntos
Resistência à Insulina , Integrinas , Humanos , Pessoa de Meia-Idade , Músculo Esquelético , Fosfatidilinositol 3-Quinases , Diálise Renal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA